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Abstract
Using the extended homogeneous balance method (EHBM) and variable
separation approach (VSA), an exact variable separation excitation of a (2+1)-
dimensional system is derived. Based on the derived excitation, a new general
type of solitary wave, i.e., semifolded solitary waves and semifoldons (SFSWs),
is defined and studied. We investigate the behaviours of the interactions for
the semifolded localized structures and find that the interactions possess some
novel and interesting features.

PACS numbers: 02.30.Jr, 05.45.Yv

1. Introduction

In non-linear science, soliton theory plays an essential role and has been applied in almost all
natural sciences, especially in all physics branches such as condensed matter physics, field
theory, fluid dynamics, plasma physics, optics, etc [1]. Most of the previous studies on soliton
theory, especially in higher dimensions, have been restricted to the single-valued situations,
such as dromion, compacton, peakon and their interactions. However, in various cases, real
natural phenomena are too intricate to describe only by virtue of single-valued functions. For
instance, in nature, there exist very complicated folded phenomena such as the folded protein
[2], folded brain and skin surface and many other kinds of folded biological systems [3]. The
simplest multi-valued (folded) waves may be the bubbles on (or under) a fluid surface. Various
ocean waves are really folded waves too. In [4–6], the authors discussed some simpler cases
of multiple-valued solitary waves (folded in all directions). However, nature is extremely
colourful and may exhibit quite complicated structures. For example, some structures such
as ocean waves may fold in one direction, say x, and localize in a usual single-valued way in
another direction, say y. Of course, at the present stage, it is impossible to make satisfactory
analytic descriptions for such complicated folded natural phenomena. But it is still worth
starting with some simpler cases. Similar to the single-valued case, the primary question
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we should (and we can) ask is: are there any stable multi-valued (folded in one direction)
localized excitations? For convenience, we define the multi-valued localized excitations as
semifolded solitary waves (SFSWs). Furthermore, if the interactions among the semifolded
solitary waves are completely elastic, we call them semifoldons. Within our knowledge,
studying the semifolded localized excitations in higher dimensional physical models is still
open. Meanwhile, how to find new localized excitations is one of the most fundamental and
significant studies in non-linear and theoretical physics. Motivated by these reasons, we take
the (2+1)-dimensional generalized Nizhnik–Novikov–Veselov (GNNV) system

ut + auxxx + buyyy + cux + duy − 3a(uv)x − 3b(uw)y = 0, (1a)

ux = vy, (1b)

uy = wx, (1c)

where a, b, c and d are arbitrary constants, as a concrete example. For c = d = 0, the
(2+1)-dimensional GNNV system will be degenerated to the usual two-dimensional NNV
system, which is an only known isotropic Lax integrable extension of the classical (1+1)-
dimensional shallow water wave KdV model. Boiti et al [7] solved the GNNV system by
using the inverse scattering transformation (IST), and Radha and Lakshmanan [8] constructed
its multi-dromion solutions. By using the variable separation approach (VSA) based on the
extended homogeneous balance method (EHBM) [9], we obtain a general variable-separated
solution. This solution turns out to be a quite ‘universal’ formula, and is valid for suitable
fields or potentials of various (2+1)-dimensional physically interesting integrable models,
including the Davey–Stewartson (DS) equation, the dispersive long wave equation (DLWE)
[4], the Broer–Kaup (BK) system [4, 9], the higher order Broer–Kaup system [5], the Nizhnik–
Novikov–Vesselov (NNV) system, the ANNV (asymmetric NNV) equation and so on [4]. In
principle, following the general ideas introduced in [10], one could investigate the stability
properties of the solutions presented in this paper and their relevance as asymptotic states
for suitable initial boundary value problems. However, here, we study only the interaction
behaviour among the localized solutions by studying the asymptotic property of the ‘universal’
formula because these formulae are valid for more than one system.

The paper is organized as follows. In section 2, we apply a variable-separated approach
based on the extended homogeneous balance method (VSA on EHBM) to solve the (2+1)-
dimensional GNNV and obtain its exact excitation. Section 3 is devoted to investigating the
interaction properties both for the semifoldons and between single-valued and semifolded
localized excitations. A brief discussion and summary is given in the last section.

2. Variable-separated solutions for (2+1)-dimensional GNNV equation

According to the EHBM, let

u = f (ϕ)xy + u0, (2a)

v = g(ϕ)xx + v0, (2b)

w = h(ϕ)yy + w0, (2c)

where f (ϕ), g(ϕ) and h(ϕ) are functions of one argument ϕ only, ϕ = ϕ(x, y, t), and
{u0, v0, w0} are arbitrary known seed solutions of the GNNV equation.
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Substituting equations (2a)–(2c) into equations (1a)–(1c), respectively, and collecting all
homogeneous terms in the partial derivatives of ϕ(x, y, t), we obtain

ut + auxxx + buyyy + cux + duy − 3a(uv)x − 3b(uw)y

= (f (5) − 3f ′′g(3) − 3f (3)g′′)aϕ4
xϕy + (f (5) − 3f ′′h(3) − 3f (3)h′′)bϕxϕ

4
y

+ lower power terms of the derivatives of ϕ(x, y, t) with respect to x, y

and t = 0, (3a)

(f (3) − g(3))ϕ2
xϕy + (f ′′ − g′′)ϕxxϕy + 2(f ′′ − g′′)ϕxϕxy + (f ′ − g′)ϕxxy + u0x − v0y = 0,

(3b)

(f (3) − h(3))ϕxϕ
2
y + (f ′′ − h′′)ϕxϕyy + 2(f ′′ − h′′)ϕyϕxy + (f ′ − g′)ϕxyy + u0y − w0x = 0.

(3c)

For simplicity, in equations (3b) and (3c), we take the special solution as

f = g = h, u0 = 0, v0 = v0(x, t), w0 = w0(y, t). (4)

Now we can simplify equation (3a). First, setting the coefficients of the terms with aϕ4
xϕy

and bϕ4
yϕx to zero, we obtain an ordinary differential equation for function f (ϕ):

f (5) − 6f ′′f (3) = 0, (5)

which indicates that the non-linear terms and the second-order derivative terms appearing
in equation (1) have been partially balanced. This is why we assume that the solutions of
equation (1) are of the form of equations (2).

The following special solution exists for equation (5):

f = −2 ln ϕ. (6)

Thereby

f ′f ′′ = f (3), f ′2 = 2f (2), f
′′2 = (

1
3

)
f (4), f ′f (3) = (

2
3

)
f (4).

Using these results, expression (3a) can be simplified as(
ϕxϕy(ϕt + aϕxxx + bϕyyy + cϕx + dϕy − 3av0ϕx − 3bw0ϕy)

+ 3
(
aϕxϕxxϕxy + bϕyϕyyϕxy − aϕ2

xϕxxy − bϕ2
yϕxyy

))
f (3)

+ (ϕy(ϕt + aϕxxx + bϕyyy + cϕx + dϕy − 3av0ϕx − 3bw0ϕy)x

+ (ϕx(ϕt + aϕxxx + bϕyyy + cϕx + dϕy − 3av0ϕx − 3bw0ϕy)y

+ ϕxy(ϕt + aϕxxx + bϕyyy + cϕx + dϕy − 3av0ϕx − 3bw0ϕy)

+ 3(−aϕxxxϕxy + aϕxϕxxxy − bϕxyϕyyy + bϕyϕxyyy))f
′′

× (ϕt + aϕxxx + bϕyyy + cϕx + dϕy − 3av0ϕx − 3bw0ϕy)xyf
′ = 0. (7)

Setting the coefficients of f (3), f ′′ and f ′ in equation (7) to zero yields a set of equations for
ϕ(x, y, t):

ϕt + aϕxxx + bϕyyy + cϕx + dϕy − 3av0ϕx − 3bw0ϕy = 0, (8a)

aϕxϕxxϕxy + bϕyϕyyϕxy − aϕ2
xϕxxy − bϕ2

yϕxyy = 0, (8b)

−aϕxxxϕxy + aϕxϕxxxy − bϕxyϕyyy + bϕyϕxyyy = 0. (8c)
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Because v0(x, t) and w0(y, t) are arbitrary functions of variables {x, t} and {y, t},
respectively, in equations (8) we can select an appropriate variable-separated hypothesis for
the function ϕ as follows:

ϕ(x, y, t) = a0 + a1p(x, t) + a2q(y, t) + a3p(x, t)q(y, t), (9)

where p(x, t) is an arbitrary function of variables {x, t}, q(y, t) is an arbitrary function of
variables {y, t}, and a0, a1, a2 and a3 are four arbitrary constants. Substituting equations
(6) and (9) into equations (2), along with equations (8), and carrying out some careful and
tedious calculations, then the corresponding excitations for the (2+1)-dimensional GNNV
system yield

u(x, y, t) = 2(a3a0 − a1a2)pxqy

(a0 + a1p + a2q + a3pq)2
, (10a)

v(x, y, t) = 2(a1 + a3q)2p2
x

(a0 + a1p + a2q + a3pq)2
− 2(a1 + a3q)pxx

a0 + a1p + a2q + a3pq
+

pt + apxxx + cpx

3apx

, (10b)

w(x, y, t) = 2(a2 + a3p)2q2
y

(a0 + a1p + a2q + a3pq)2
− 2(a1 + a3p)qyy

a0 + a1p + a2q + a3pq
+

qt + bqyyy + dqy

3aqy

(10c)

with two arbitrary functions p(x, t) and q(y, t).

3. Some novel localized structures for a (2+1)-dimensional system

It is interesting to mention that by slightly scalar transformation, the expression (10a) is
valid for many (2+1)-dimensional models, such as the DS equation, NNV system, ANNV
equation and the BK equation, etc. Therefore, we can call the expression (10a) as a common
field quantity. Moreover, because of the arbitrariness of the functions p and q included in
(10a), the quantity u possesses quite rich structures. For instance, if we select the functions
p and q appropriately, we can obtain many kinds of localized solutions, such as the multi-
solitoff solutions, multi-dromion and dromion lattice solutions, multiple ring soliton solutions,
peakons, compactons and so on [4, 5]. The properties of peakon–peakon, dromion–dromion,
compacton–compacton and foldon–foldon interactions were discussed in [4–6, 9]. In [12],
Bai et al investigate the interactions among different types of solitary waves such as peakons,
dromions and compactons both analytically and graphically. Now we pay attention to the
semifolded localized structures and interactions of single-valued and semifolded localized
excitations. In order to discuss the interaction property of the localized excitations related to
the physical quantity (10a), we first study the asymptotic behaviours of the localized excitations
produced from (10a) when t → ±∞.

3.1. Asymptotic behaviours of the localized excitations produced from (10a) [11, 12]

In general, if the function p and q are selected as multi-localized solitonic excitations with

p|t→∓∞ =
M∑
i=1

p∓
i , p∓

i ≡ pi

(
x − ci t + δ∓

i

)
, (11)

q|t→∓∞ =
N∑

j=1

q∓
j , q∓

j ≡ qj

(
y − Cj t + �∓

j

)
, (12)
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where {pi, qj } ∀i and j are localized functions, then the physical quantity u expressed by
equation (10a) delivers M × N (2+1)-dimensional localized excitations with the asymptotic
behaviour

u|t→∓∞→
M∑
i=1

N∑
j=1

{
2(a3a0 − a1a2)p

∓
ixq

∓
jy(

a0 + a1
(
p∓

i + P ∓
i

)
+ a2

(
q∓

j + Q∓
j

)
+ a3

(
p∓

i + P ∓
i

)(
q∓

j + Q∓
j

))2

}
(13)

where

P ∓
i =

∑
j<i

pj (∓∞) +
∑
j>i

pj (±∞), (14)

Q∓
i =

∑
j<i

qj (∓∞) +
∑
j>i

qj (±∞). (15)

In the above, it has been assumed, without loss of generality, that Ci > Cj and ci > cj if
i > j.

From the asymptotic result (13), we know that (i) the ijth localized excitation uij is a
travelling wave moving with the velocity ci along the positive (ci > 0) or negative (ci < 0)

x-direction, and Cj along the positive (Cj > 0) or negative (Cj < 0) y-direction; (ii) the
properties of the ijth localized excitation uij is only determined by pi of equation (11) and qj

of equation (12); (iii) the shape of the ijth localized excitation uij will be changed if

P +
i �= P −

i , (16a)

and (or)

Q+
j �= Q−

j , (16b)

however, it will preserve its shape during the interaction if

P +
i = P −

i , Q+
j = Q−

j ; (17)

(iv) the phase shift of the ijth localized excitation uij reads

δ+
i − δ−

i (18)

in the x-direction and

�+
j − �−

j (19)

in the y-direction.
The above discussions demonstrate that multiple localized solitonic excitations for the

universal quantity u can be constructed without difficulty via the (1+1)-dimensional localized
excitations with the properties (11), (12), (16) and (17). As a matter of fact, any localized
solutions (or their derivatives) with completely elastic (or not completely elastic or completely
inelastic) interaction behaviours of any known (1+1)-dimensional integrable models can be
utilized to construct (2+1)-dimensional localized solitonic solutions with completely elastic
(P +

i = P −
i , Q+

j = Q−
j for all i, j ) (or not completely elastic or completely inelastic (P +

i �= P −
i ,

Q+
j �= Q−

j for at least for one of i, j )) interaction properties. However, to the best of our
knowledge, the interactions among semifoldons, peakon, dromions and compactons have not
been reported previously in the literature. In order to see the interaction behaviours among
them more directly and visually, we investigate some special examples by fixing the arbitrary
functions p and q in equation (10a). For convenience, we set a0 = a1 = −a2 = 1, a3 = 0.2
in equation (10a) in the following discussion.
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3.2. Completely elastic interactions

Now, we discuss some new coherent structures for the physical quantity u, and focus our
attention on some (2+1)-dimensional semifolded localized structures, which may exist in
certain situations, when the function q is t-independent and p is selected via the relations

px =
M∑
i=1

Ui(ξ + wit), x = ξ +
M∑
i=1

Xi(ξ + wit), p =
∫ ξ

pxxξ dξ, (20)

where Ui and Xi are localized excitations with the properties Ui(±∞) = 0, Xi(±∞) = const.
From equation (20), one can know that ξ may be a multi-valued function in some suitable
regions of x by selecting the functions Xi appropriately. Therefore, the function px, which
is obviously an interaction solution of M localized excitations because of the property
ξ |x→∞ → ∞, may be a multi-valued function of x in these areas, though it is a single-
valued function of ξ. Actually, most of the known multi-loop solutions are a special
situation of equation (20). In general terms, if the functions p or q are taken as multiple
localized excitations that possess the phase shifts of (1+1)-dimensional models then the (2+1)-
dimensional localized excitations involving representation (10a) inherit phase shifts structures.
As simple choices for the functions p and q, one can take

px =
M∑
i=1

Ui(ξ + wit), x = ξ +
M∑
i=1

Xi(ξ + wit), (21)

q = 1 +
N∑

j=1

exp[kj (y + βj t) + y0j ], (22)

where kj , βj , wi and y0j are arbitrary constants and M,N are positive integers. If we take the
concrete forms of p and q as follows:

px = 4
5 sech2(ξ) + 1

2 sech2(ξ − 0.3t), x = ξ − 1.5 tanh(ξ) − 1.5 tanh(ξ − 0.3t), (23)

q = 1 + exp(y), (24)

then we successfully construct semifolded localized excitations that possess phase shifts for
the physical quantity u depicted in figure 1. From figure 1, we can see that the two semifolded
localized excitations possess novel properties, which fold in the y-direction, and localize in a
usual single-valued way in the x-direction. Moreover, one can find that the interaction between
the two semifolded localized excitations (semifoldons) is completely elastic, which is very
similar to the completely elastic collisions between two classical particles, since the velocity
of one of the localized structures has set to be zero and there are still phase shifts for the two
semifolded localized excitations. To see more carefully, one can easily find that the position
located by the large static localized structure is altered from about x = −1.5 to x = 1.5 and
its shape is completely preserved after interaction.

Along the same line of argument and performing a similar analysis, when p and q are
taken as the following forms:

px =
M∑

j=1

Uj(ξ + wj t), x = ξ +
M∑

j=1

Xj(ξ + wj t), (25)

q =




a0, y + βit � y0i − π
2ki

a0 +
∑N

i=1 (bi sin(ki(y + βit − y0i )) + bi), y0i − π
2ki

< y + βit � y0i + π
2ki

a0 +
∑M

i=1 2bi, y + βit > y0i + π
2ki

,

(26)
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(a)

(b)

(c)

Figure 1. The evolution of the interactions of two semifolded localized structures for the physical
quantity u expressed by equation (10a) with conditions (23) and (24) at times (a) t = −15,

(b) t = −5 and (c) t = 15, respectively.
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where M and N are positive integers, then we may construct another type of semifolded
localized structures for the physical quantity u. For simplicity, we take

px = 4
5 sech2(ξ) + 1

2 sech2(ξ − 0.3t), x = ξ − 1.5 tanh(ξ) − 1.5 tanh(ξ − 0.3t), (27)

q =




0, y � −π
2

sin(y) + 1, −π
2 � y � π

2

2 y > π
2 .

(28)

Then we derive a combined localized coherent structure depicted in figure 2.
According to the above ideas, if we take p and q to have the following forms:

px =
M∑
i=1

Ui(ξ + wit), x = ξ +
M∑
i=1

Xi(ξ + wit), (29)

q =
{∑N

j=1 ej exp(njy + wj t + y0j ), njy + wj t + y0j � 0∑N
j=1 (−ej exp(−njy − wj t − y0j ) + 2ej ), njy + wj t + y0j > 0,

(30)

where M and N are positive integers, then we may construct third-type semifolded localized
structures for the physical quantity u. For convenience, we select

px = 4
5 sech2(ξ) + 1

2 sech2(ξ − 0.3t), x = ξ − 1.5 tanh(ξ) − 1.5 tanh(ξ − 0.3t), (31)

q =
{

exp(y) y � 0

−exp(−y) y > 0,
(32)

and find that their interaction is also completely elastic. The corresponding plot is depicted in
figure 3.

3.3. Non-completely elastic interactions

It is interesting to mention that though the above choices lead to completely elastic interaction
behaviours for the (2+1)-dimensional solutions, one can also derive some combined localized
coherent structures with non-completely elastic interaction behaviours by selecting p and q

appropriately. One of the simple choices of the combined localized coherent structures with
non-completely elastic interaction behaviour is

px =
M∑
i=1

Ui(ξ + wit), x = ξ +
M∑
i=1

Xi(ξ + wit), (33)

q = a0 +
N∑

j=1

Bj tanh[Kj(y + βt) + y0j ], (34)

where a0, Bj ,Kj , β,wi and y0j are all arbitrary constants, and M,N are positive integers.
We can find that the interaction between semifoldon and dromion may exhibit a novel
property, which is non-completely elastic since their shapes are not completely preserved
after interaction. In order to clarify this phenomenon more clearly and visually, an example is
depicted in figure 4 when the related functions are fixed as follows:
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(a)

(b)

(c)

Figure 2. The evolution of the interactions of two semifolded localized structures for the physical
quantity u expressed by equation (10a) with conditions (27) and (28) at times (a) t = −20,

(b) t = −5 and (c) t = 20, respectively.
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(a)

(b)

(c)

Figure 3. The temporal evolution of two semifolded localized structures interaction for the physical
quantity u expressed by equation (10a) with conditions (31) and (32) at times (a) t = −20,

(b) t = −5 and (c) t = 20, respectively.

px = 4
5 sech2(ξ) + 1

2 sech2(ξ − 0.3t),

x = ξ − 1.5 tanh(ξ − 0.3t),
(35)

q = tanh(y). (36)
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(a)

(b)

(c)

Figure 4. The time evolution of the interaction between semifoldon and dromion as seen in the
physical quantity u with conditions (35) and (36) at the times (a) t = −15, (b) t = −5 and
(c) t = 15, respectively.
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Another example is provided by a combined semifoldon and compacton soliton solutions
in the (2+1)-dimensional system. The corresponding ansatz is

px =
M∑
i=1

Ui(ξ + wit), x = ξ +
M∑
i=1

Xi(ξ + wit), (37)

q =




a0, y + βit � y0i − π
2ki

a0 +
∑N

i=1 (bi sin(ki(y + βit − y0i )) + bi), y0i − π
2ki

< y + βit � y0i + π
2ki

a0 +
∑M

i=1 2bi, y + βit > y0i + π
2ki

,

(38)

where M and N are positive integers, then we may construct another non-completely elastic
interaction example for the physical quantity u. For simplicity, we can choose

px = 4
5 sech2(ξ) + 1

2 sech2(ξ − 0.3t), x = ξ − 1.5 tanh(ξ − 0.3t), (39)

q =




0, y � −π
2

sin(y) + 1, −π
2 � y � π

2

2 y > π
2 ,

(40)

and obtain a combined semifoldon–compacton localized coherent structure with non-
completely elastic interaction behaviour as displayed in figure 5.

In fact, we can also construct combined semifoldon–peakon localized coherent structures
with non-completely elastic interaction behaviours by selecting p and q as

px =
M∑
i=1

Ui(ξ + wit), x = ξ +
M∑
i=1

Xi(ξ + wit), (41)

q =
{∑N

j=1 ej exp(njy + wj t + y0j ), njy + wj t + y0j � 0∑N
j=1(−ej exp(−njy − wj t − y0j ) + 2ej ), njy + wj t + y0j > 0,

(42)

where M and N are positive integers. Because of the complexity, here we just write down the
simplest case

px = 4
5 sech2(ξ) + 1

2 sech2(ξ − 0.3t), x = ξ − 1.5 tanh(ξ − 0.3t), (43)

q =
{

exp(y) y � 0

−exp(−y) y > 0.
(44)

The corresponding time evolution plot is displayed in figure 6.

4. Discussion and summary

Starting from the obtained variable-separated excitations, which describe some quite universal
(2+1)-dimensional physical models of a (2+1)-dimensional system, we discuss the interactions
among semifoldons, peakons, dromions and compactons both analytically and graphically, and
reveal some novel properties and interesting behaviours: the interactions among semifoldons
are completely elastic and possess phase shifts, and the interactions of semifoldon–dromion,
semifoldon–compacton and semifoldon–peakon are non-completely elastic depending on the
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(a)

(b)

(c)

Figure 5. The evolution of the interaction between semifoldon and compacton for the physical
quantity u expressed by equation (10a) with conditions (39) and (40) at times (a) t = −20,

(b) t = −5 and (c) t = 20, respectively.
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(a)

(b)

(c)

Figure 6. The evolution of the interaction between semifoldon and peakon for the physical quantity
u expressed by equation (10a) with conditions (43) and (44) at times (a) t = −20, (b) t = −5 and
(c) t = 20, respectively.

specific details of the solutions. To our knowledge, the semifolded solitary wave and/or
semifoldon excitations for the (2+1)-dimensional GNNV system have not been reported
previously in the literature.



A new general type of solitary wave of a (2+1)-dimensional system 4389

In [10], the author pointed out that the localized solutions of the DS equation, say,
dromions, can be remote controlled by choosing a suitable motion of the boundaries. In [4],
Tang and Lou also pointed out that though the localized excitations such as the dromions,
lumps, ring solitons, peakons and foldons possess zero boundary conditions for the quantity
u, the boundary conditions for other quantities, say, the mean flow for the DS model, are not
identically zero. The different selections of the arbitrary functions p and q in (10a) correspond
to the different selections of the boundary conditions of those fields (or potentials) with nonzero
boundary conditions and vice versa. That means, in some sense, the foldons, semifoldons
and other types of localized excitations for some physical quantities are remote controlled by
some other quantities (or potentials). This fact hints that it is possible for one to observe the
foldons, semifolons and other types of localized excitations from the systems governed by
the VSA on EHBM solvable models by inputting suitable boundary conditions. For foldons,
the input boundaries may be selected as (1+1)-dimensional loop solitons.

Because of the complexity of semifolded phenomena and the wide applications of the
soliton theory, what more we can learn about the new localized structures and interactions
between different types of solitary waves and their applications in reality is worth further
study.
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